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ABSTRACT 

The stability of the interstellar gas to perturbations in the gas 

pressure, magnetic field and cosmic ray pressure is discussed from a hydro- 

magnetic point of view taking rotation into account. For a particular model, 

it is shown that the system is unstable to transverse perturbations in  the sense 

described by Parker (4966). This result holds true for a uniformly rotating 

system bound in a stellar parabolic gravitational well provided only that the 

I Coriolis acceleration is everywhere less than the stellar gravitational accel- 

I eration. The tendency for the interstellar gas  to drain along the lines of force 

into the lowest regions of magnetic field is reduced, but not removed, by ro- 

tation. 

tive gravity (g - rS2 ). 

The e-folding time is of the order of the free-fall time under an effec- 

2 

The results a r e  derived for a particular model, but their physi- 

cal  content should be of general validity for all systems. 
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1. INTRODUCTION 

In a recent paper (Parker, 1966),  the possible galactic mag- 

netic field configurations were discussed from a theoretical point of view. 

Both the magnetic field and cosmic ray gas  exert pressures of the order of 

10* dynes cm 

l 

-2  . It was assumed that the intergalactic medium (if any) 

exerted a negligible pressure compared to either the interstellar magnetic 

field or the cosmic ray gas. 

It was shown that the interstellar gas, cosmic ray, magnetic 

field system, which is held in a stellar gravietional field, was unstable to 

a Rayleigh-Taylor instability of such a nature that the interstellar gas tended 

to conaentrate in "pockets" suspended in the magnetic field. Several possible 

configurations were discussed by Parker; e.g. , plane and circular geo- 

metries, twisted and uniform fields. No matter which particular situation 

was chosen, nor how the gravitational field varied--within wide limits-- it 

was found that the system was always unstable with a growth time of the order 

of the free-fall time. 

U 

It occurred to the author that one possible stabilizing influence 

which had been neglected was the Coriolis force due to galactic rotation. 

The reason that we expect rotation to slow down or stop the instability is that 

the Coriolis force will t ry  to eject material from the pockets. 
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In order to be specific, we will examine the stability of a 

cylindrical two-dimensional atmosphere which possesses an ambient mag- 

netic field, €3 (r), whose lines of force a r e  concentric circles about the 

origin. 

not general, it is sufficient to show the tendency of rotation to stabilize the 

system. 

0 

Here r is the radial distance from the origin. While this case is 

The results obtained below show that the Coriolis force will 

It is shown that the e- reduce the rate of instability, but w i l l  not stop it. 

folding time is of the order of the free-fall time appropriate to an effective 

gravity (g - rSZ ). 2 

2. GENERAL ANALYSIS i 

W e  choose our particular geometry to be an  infinitely long 

cylinder which we treat as a two-dimensional atmosphere in  the sense that 
I 
I '  

I all quantities a r e  independent of Z and depend only upon r and 8 where 

(r, 8 ,  Z) a re  the usual cylindrical coordinates. The ambient magnetic field 

can then be written 

The composition of matter in the cylinder is taken to be three- 

fold. 
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1. We assume s o m e  cylindrically symmetric spatial distri- 

bution of s tars  exists thrOughout the cylinder. These stars provide a gravi- 

tational acceleration, g( r ) ,  which is purely in the radial direction. Apart 

from providing the gravity, the stars are assumed to take no part  in any 

motion. 

2. We assume that there is an isothermal distribution of gas  

embedded in the magnetic and gravitational fields. 

velocity u in  any given direction and an equilibrium mass density 

This gas has r. m. s. 

. 
Thus, the equilibrium gas  pressure is ?,(Y) = k(f) u2 . This thermal 

gas  is assumed to have a sufficiently low mass density that its contribution 

to the gravitational field of the system is negligible. In fact, including self- 

gravitation would just  enhance the rate of instability. 

3 .  W e  assume that the system also contains a cosmic ray gas  

whose equilibrium pressure i s  P (r). 

ray gas  is so  hot a s  to be essentially unaffected by the stellar gravitational 

It is further assumed that the cosmic 
0 

field. Further, we shall be concerned only with perturbations whose phase 

velocities are considerably smaller than the sound speed in the pure cosmic 

ray gas ( -  c / J 3 )  . The volume of a tube of force does not vary to f i rs t  order 

i n  a perturbation. Hence. 
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where 6P(r, 9 ,  t) is the first order perturbation in the cosmic ray pressure. 

In order to include rotation, we assume that the cylinder of 

L material is rotating with an equilibrium velocity of rotation, Vo(r), which is 

taken to  be parallel to  the unperturbed magnetic field lines. The equilibrium 
b 

pr e s sur e condition is - 

In the cases which we shall discuss, the cylinder will  be on in- 

finite, rather than finite, extent in the (r, 0 )  plane. 

quantities tend to zero as r + a0 independently of 0 ,  in  order to preserve 

Hence, the perturbation 

physic a1 sense. 

The equations of motion for the thermal gas can be written 

We introduce a transverse velocity perturbation 6% (r, 0 ,  t) I (6vr , 6ve, 0 )  

and a perturbation magnetic vector potential, 6 A (r, 0 , t), which will  take to 

be functions of r ,  0 , and t only. We also take 6A = 26A where 2 is a unit 

CCI 

cu 

vector in the Z-direction. The linearized equations of motion 
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Here 6 is the perturbation to the thermal gas pressure and the angular fre- 

quency of rotation, G? , is defined by V 
P 

= r G? . 
0 

The conservation of mass is  described by 

W e  make the assumption that the pressure variations in each element of thermal 

gas are adiabatic so that 

6 



where y is a constant. Thus 

Since the system under discussion is a two-dimensional atmos- 

phere in the (r,e) plane, we must have the net force in the Z-direction 

vanishing. Hence 

In order to exhib-t the basic instabilities due to  the presence o 

rotation, magnetic field and cosmic ray gas ,  we shall consider three simple 

situations . 
a) We assume that only the rotating thermal gas is present 

and that it possesses a finite pressure. 

b) 

no cosmic ray gas is present. 

field. 

in the absence of rotation, this system is unstable to transverse waves. 

We assume that the thermal gas is completely cold and that 

Thus the only force comes from the magnetic 

This system is allowed to rotate since it is known (Parker, 1966) that, 

c) We assume that the thermal gas is completely cold and that 

the magnetic field pressure is an infinitesimal fraction of the cosmic ray 

pressure. Thus, the field exerts no force and serves only to couple the cosmic 
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l r i  ray  gas to the interstellar medium. 

the cosmic ray pressure. 

sence of rotation, to transverse waves, so we allow rotation. We shall see 

later that this system is ill-determined in some sense to be specified. 

will result  in  an inhomogeneous Riemann-Hilbert problem which is extremely 

difficult to solve. 

imations. 

this otherwise unstable system. 

In this case, the only force comes from 

This system is known to be unstable, in the ab- 

This 

A s  a consequence, we will make several restrictive approx- 

Nevertheless, it wil l  still be possible to see how rotation alters 

In all three cases, we assume that the cylinder has constant 

angular frequency, i. e., 132 /dr = 0. 

it simplifies the analysis. 

systems which a re  known to be unstable i f  52 = 0. 

While this is a restrictive condition, 

I t  suffices to show how rotation affects the three 

W e  shall consider each of the above situations in turn. 

3. THERMAL GAS INCLUDING CONSTANT ROTATION 

Here we set 

case, the appropriate linearized equations of 5 2 become 

= o  In such a 
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We now assume that all perturbation quantities vary as 

where m is integer and, fo r  instability, we require 

Making use of Eqs. (15), (16) and (17), we can eliminate 

and 6 p h )  from Eqs. (13) and (14) in  favor of SV, (r) and ShlV) 
From the two resulting equations, we eliminate 

. Upon so doing, it can be shown, after some algebra, that 

s. V@ I v )  in favor of 

s V, ( Y )  

satisfies the equation 

where 

9 
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y = M R - d  , , 

and primed quantities denote differentiation w. r. t. r. , i. e. , 

If we set 52 = 0 in Eq. (18) and search for modes with = (r-'  and t large 

it is a simple matter to show that Eq. (18) reduces to 

Since the interstellar gas is taken to be isothermal 

Thus, a marginally stable solution exists i f ,  and only if ,  y =  1. 

< 1, it is well known that the system is unstable. Y, 

In fact, if 

In the case where 52 is finite, we search for marginally stable 

solutions in the form 

30 =,m.l2-k) = -;r-' 
and t large. Then it can be seen that Eq. (18) reduces to 
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where use has been made of Eq. (23). 

solution exists only if y = 1. 

stable provided g > rS2 . 

Thus, once again, a marginally stable 

For y > 1, it can be shown that the system is 

2 
This conditional stability ar ises  because 

It is clear that in order to define the cylinder, w e  require some 

2 
form of central condensation in density. Hence, we require g > r Q  

points if the material is to be b o u n d l f  g < rS2 , it is clear that we have 

infinite density as  r + 00 and this i s  a non-physical situation. 

at a l l  

2 

Having demonstrated that the rotating interstellar gas is stable 

by itself, unless y <  - 1, the obvious question to ask is whether the magnetic 

field and cosmic ray gas destabilize this system in the case of constant, but 

finite, angular frequency. 

To exhibit the basic response of the interstellar gas  due to the 

magnetic field and cosmic ray gas ,  it suffices to treat  the interstellar gas as  

completely cold, Le .  u = 0. 2 

4. COLD GAS INCLUDING ROTATION AND MAGNETIC FLELD 

Here, we ignore the cosmic ray gas pressure and the thermal 

gas  pressure so that we have 6 = 235 =da-To . k’ P 

11 
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In this case, the appropriate linearized equations of 5 2 may 

be written 

L 

I '  
If we again assume that all  first order perturbation quantities 

vary as 

we can eliminate all the perturbation quantities in Eqs. (27) through (30) in 

favor of CiA(r). Upon doing so ,  it can be shown, after some algebra, that 

CiA(r) is determined from the equation 



1 

where, as before, 7 / = d ! - ( C ,  . 

In order to make a direct comparison with the results obtained 

by Parker fo r  this case, in the absence of rotation, we investigate Eq. (32) 

under the assumption of constant Alfven velocity. Then 

Use of Eq. (33) in (26) enables us to write 

2 
where V = constant = 8,' /(4ak) . 

We further restrict  the system by demanding that the distribution 

of stars be chosen so that the interstellar gas is bounded in a parabolic gravi- 

tational potential well. Then 

(35) 

We also require jo) zfiz in order that the cylinder have some physical 

meahihg. In such a case, we see that Eq. (34) yields 

Thus 

is that which gives 6A(r )  regular at r = 0 and 6A(r )  -. 0 as r -c ob. 

the cylinder is of infinite radius. The solution of Eq. (32) required 

13 
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U s e  of Eqs. (33) ,  (34) and (35) enables E . (32) to be written '1 

where 

and 

The solution of Eq. (37) which is regular at r =  0, is shown in 

Appendix I to be 

I ,  

I 
1 '  
I 

Here p is one of the two values 

and ,Fi (a, p, y) is the degenerate hypergeometric function. In Appendix I 

we have given some of the asymptotic properties of F (a, p, y) for  various 

limiting values of cy, p or y. 
i,' ' 

These properties a r e  made use of below. 

If we choose the lower sign in Eq. (39) it can be seen that, for 

b finite, as r -, mwe have 

14 



Thus 6A(r) -c 0 as  r -t cb for this p. 

I If we now look for the behavior of Eq. (38) with U =  Ma+ ; f - '  

and Cereal, positive and sufficiently large, we see that 

since (*V2 + S2 2 ) < 0 because p is the solution of Eq. (39) with the lower 

sign . 
nl -XrZ For any small enough r ,  we see that s /q w y" e, 

I I where b o  
, Also for any finite, but reasonably large, r ,  we can always choose 

a 'iT such that 

where 
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Hence, for reasonably large, but finite, r ,  we can always find a C such 

that 

It is evident from Eqs. (38) and (44) that 6A(r )  is well behaved satisfying 

6A(O) = 0 and oscillating with decreasing amplitude with increasing radius. 

Within the limitation of the boundary conditions, the system is unstable for 

sufficiently large, real, positive which a re  given by 

The wavelength of the oscillation is increased over its value 

in the absence of rotation by the factor ( 1 -  a,r2'$,-fk. Thus the e-folding 

time for a fixed wavelength is increased over that which obtains in the 

absence of rotation by the Sam-e factor. 

tion, 

This result  is subject to the condi- 

5. COLD GAS INCLUDING ROTATION AND COSMIC RAYS 

In this case we neglect the thermal gas pressure and magnetic 

field in  favor of the cosmic ray pressure. Thus we se t  70= sp = so = 
6Q =d%f =().The appropriate linearized equations of fi 2 now become 

p/= -p (3 - p a 2 )  J 
(45) 

16 



. 

In this section of the paper, we will  again assume a particular 

form for  the gravitational acceleration. In fact, we let g(r)  be given by Eq. 

(35). It is a relatively simple matter to show that, with all  perturbation 

quantities varying as 

we can write the equation fo r  6P(r, t) in the form 

where \ 

We can simplify Eq. (52) by setting 

(53) I 

17 



when it follows that 

It can be seen by inspection that, for s2 = 0 ,  the solution to 

Eq. (54) is  indeterminate as far as the radial dependence is concerned. If 

we a re  not to have 52 = 0 as a singular case, it is clear that the appropriate I 

solution to Eq. (54) must incorporate this indeterminateness for 51 = 0 as a I 

"boundary condition. 'I 

We must also demand that the appropriate solution of Eq. (54) 

be regular at r = 0 and vanish as P + 00 since the cylinder is of infinite 
I 

extent. 

The solution of Eq. (54) which satisfies these conditions is 

difficult to obtain. In Appendix II, the general method of finding such a 

solution is given. In view of the formidable amount of mathematics involved I 

in obtaining the required solution, we feel that sufficient physical insight 

I will be gained if  we iterate the general solution of Appendix I1 by a Neumann 

series and terminate the solution after one iteration. This is a valid tech- I 

nique for small 51. The mefhod of generating this solution is presented in , 

Appendix III. 

small amount of rotation alters the instability ra te  derived by Parker (1966). 

Such a solution is only approximate, but it demonstrates how a 
, 
~ 
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, .. 
The approximate solution of Appendix 111 is 

I '  

I .  

~. 

where 

This solution is valid for small S2, large m and reasonably short times. 

We see that the system is unstable with an e-folding time given 

by 

For  large m and provided dl*4,(y"Lp is reasonably well behaved we see 

that 

In the absence of rotation, the e-folding time, say - Lo , is 

given by 
- 2  c, = a (..g,)-' 

Thus the time scale for instability is increased over the value which obtains 

in  the absence of rotation by a factor (I+-! for weak rotation. 
2 



For  strong rotation, 

unable to prove) that the e-folding 

the value given by Eq. (58).  

Within the limitation 

2 
but g > R S2 we expect (but have been 

time will be increased even more than 

0 

of the approximations made, we have 

shown that this system is unstable. 

6 .  DISCUSSION 

The basic point established by the above calculations is that if 

the lines of force of the large scale galactic, or spiral a rm,  magnetic field 

a r e  confined by the weight of the interstellar gas, then the gas always tends 

to drain downward along the lines of force towards the lowest regions. 

result is true even when rotation is present. 

This 

The speed with which the gas drains can be slowed, but not 

2 stopped, by rotation provided only that g > r!G? . 
stability is of the order of the free-fall time under an effective gravity 

The e-folding time for in- 

2 
(g - 1. 

7 Since the galactic free-fall time is of the order of 3 x 10 years 

we expect that the magnetic field and cosmic ray gas will drive the instability 

7 8 2 with a time scale of order 10 - 10 years in regions where Rs2 << g and 
0 

2 slightly longer times in regions where RS2 go' 

20 
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APPENDIX I 

We wish to solve 

-1 2 2 - 2  ( a r t r  ) t b A ( b - c r  - m r  ) = 0  
d6A + -  d26A 

- 2  dr 
dr 

subject to the conditions 

i) 6A(r)  + 0 a s r +  00 , 

ii) 6A(r)  is regular at r = 0. 

2 We change variables through r = f when ( A i )  becomes 

2 -1 + -  d6A 45 2 (4 t 2af) + 6A(b- cf - m f ) = 0 . d26A 
df df 

Now let 

where 

4p 2 t 2pa - c  = 0. 

Then it can easily be shown that f(f  ) satisfies 

- 

(am t b ) ]  = 0. 1 
+ f C ( L ( m + 1 ) + -  4 

22 



This equation is simply the equation for  the degenerate hypergeometric function. 

Since we require that 

tion to Eq. (A5) is 

6A(r )  be regular at r = 0 we see that the appropriate solu- 

Thus the solution to Equation ( A i )  which is regular a t  r = 0 is 

Here 6A is an arbitrary constant and )I is the solution of Eq. (A4) for which 
0 

6A(r) -c 0 a s r  +co. 

This value of )I is chosen in the text. 

Some of the asymptotic properties of the degenerate hypergoemag- 

netic function which a re  made use of in the text are 

where 

(c -2.) 2 5 =  c - 1. 1 
2 

h = - -  

23 
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I .  

ii) for [ X I  >> 1 and a, c finite, we can write (Erdeyli et. al. 8 1953) 

1%) 
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APPENDIX I1 

We wish to solve . 

I . ,  

where 

subject to the conditions: 

2 i) 

ii) 

y(r, t) is regular at r = o 

Cj2 (r, t) -c o for all finite t as r -C m > 
iii) in the limit S2 + qyr, t) must be an undetermined function of r but 

a determined function of t. This condition is enforced so that the solution of 

Eq. (Bi) reduces to Parker’s (1966) solution in the limit S2 -c 0 .  

In order to solve Eq. (Bi) subject to these conditions, it proves 

convenient to define a Green’s function. 

theses on the left hand side of Eq. (Bi) is a linear operator in time. 

venience we set  

We note that the operator in paren- 

For  con- 

We define the Green’s function, G( t ) ,  and the homogeneous functions ai(r, t), 

by 

2 5  
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and % 

T l i ( r , t )  = 0 , i =  1, 2, 3, 4. (B 4) 

. 
We note that the i&.(r, t) a r e  completely undetermined as far a s  the spatial 

dependence is concerned since T is purely a time operator. 

1 

Thus, we expect 

intuitively that the general solution of Eq. (B1) will reduce to the *.(r,t) in 

the limit 52 + 0. 

1 

This expectation is substantiated by the analysis. 

Making use of Eqs. (B3) and (B4), we see that the solution to Eq. 

(B1) can be written 
4 

That this is indeed the solution to Eq. (B1) can be seen by operating from the 

left in Eq. (B5) vriith T. 

Here, the A .  a r e  arbitrary constants. We can simplify the problem 
J 

of solving this implicit equation for (rs t) if we write ? 

where x(rs t) satisfies the equition 

c and 



. 
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c 

It is clear that if we can solve Eq. (B7) f o r x  (r, t) it is a 

relatively simple matter to find 

weighted integral o f x  (r, t) with respect to time. 

(r,t) since we only have to perform one Y 
. r  

Even without solving 
i* 

Eq. (B7) it is obvious that152 = 0 then 

and, since the Q.(r , t)  a r e  completely unspecified a s  far as their radial de- 

pendence is concerned, so  also is y(r,t). 
J 

Thus, the solution of Eq. (Bi) given by Eq. (B6) does indeed 

reduce to  Parker's solution in the absence of rotation (provided, of course, 

If all the Q.(r, t) = 0 and/or all the X = 0, then the only solution 
J j 

in the limit 52 = 0 is y(r, t) = 0. This is a rather trivial case. Consequently, 

we shall assume that Q.(r, t) # 0 for any 52 value including 52 = 0. (We make 

no statement concerning the 1. as yet.) 

J 

J 

We do not propose to find explicitly the solution for Eq. (Bi) in  

this Appendix since we do not know the *.(r,t). We will set up a sequence of 
J 

steps such that, once the Q.(r, t) a re  specified, a solution to Eq. (B7) can be 
J 

found. T h u s 9  (r, t) can be determined. 

In order to solve Eq. (B7) we first Mellin t ransformy(r ,  t) and 

*.(r,t) w.r. t .r .  The Mellin transform is defined by 
J 

I 

J t l  



and its inverse transform 7,+; dl r, 

t 

Here E is to be chosen so that AIV) satisfies any appropriate conditions. 

In our case these a r e  that 3c(yI t) be regular at r = 0 and vanish as r + 00 for 

all finite t. 

0 

For convenience,, we write 

where 

For  simplicity, we shall assume that 

Although Eq. (B13) is not a necessary requirement, it simplifies the analysis. 

In principle, it is  possible to solve Eq. (B12) without the use of Eq. ( B i 3 ) ,  but 

this is a difficult task. 

2 8  



If Eq. (B13) is satisfied, we see that Eq. (B12) becomes 

L 

4 

Before proceeding further with Eq. (B14), let us examine G(t - t ) and thus 1 

g(t - ti) .  

It can be seen from Eq. (B3) that 
r'lJO+o4 

.i w (C --t 1 ) 
e dc3 

J li ( U ? - 4 J ' W 1 + 5 R U  (B 15) 

G(-t-f,) = (&I' 
(+ 04 

where o has yet to be specified. 

G(t - t ) propagate the solution a t  t forward to its value a t  t,. it is clear that 
1 1 

Since the physical situation demands that 
0 

for t > t we require G( t  - tl) = 0. Thus we choose o so that 
1 0 

G ( W )  J 

= c >  
J 

where the u a r e  the roots of I 

Thus we canwrite 
4 

Eq. (B14) as  
1' t 



We also know that 

where the u are again the roots of Eq. (B17) and the a.(r) are completely 

undetermined. 

J j 

Setting A.( g )  = aj(r)] we see that Eq. (B18) can be written 
J 

Q 

1, 
4 < o  

' 
; and 6(t) is the Dirac 6-function. Thus Eq. (B20) where S(x)  = 

can be written , 



h Now it can easily be seen that I -  
Y 

where the contour C in the complex z-plane is a circle centered on the origin 

of infinite radius. But this integral is zero. Then the right hand side of Eq. 

s also zero. Hence Eq. (B22) can be written 
Q 

f 8  

<=( 

Now let us consider 

It is clear that @(z) is an analytic function of z and is therefore 

constant. By considering z -, 04 we see that @ ( z )  = 0. Thus 

for all z. In particular, i f  z = 

f 

0, we see that 

31 
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I where p is to be determined so , t )  = 0 for t < 0. 
B 0 

I 

For convenience we write 

From Eq. (B26) we see that 

I 

32 
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, -* 

’I 

1 

Hence Eq. (B31) becomes 
4- s” 3 1 

I I -E - 

4 = t  

Hence the general solution to Eq. (B1) under the assumption that Eq. (B13) is 

Thus once we a r e  given the a.(r) it is possible, in  principle, to evaluate the 

triple integral in Eq. (B35) and hence to find the 

properties as r+ 0, r -. oa, and vanishes for t< 0 for  all r. 

found by choosing and p appropriately. 

J 

r ,  t) which has the required ‘19 
Such a F-) is 

0 0 

If Eq. (B13) does not hold, the simplest method of solving Eq. 

(B1) is to treat  Eq. (B12) as an inhomogeneous Carleman integral equation and 

then solve the corresponding inhomogeneous Riemann-Hilbert problem. Should 

such an approach be required, the reader is referred to Muskhelishvili (1953). 
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APPENDIX III 

5 
I 

I 

I 

i 

For smallS2 and a. (r, t) # m e  can approximate to the solution 
J 

of Eq. (B1) by4. 

Also, we know that 

cr.t 
a. (r, t) = a.(r)e J 

J J 

Now it i s  known that, in the absence of rotation, the roots of Eq. 

(B17) are just 

3 f '  



Of these four roots only u1 leads to an unstable situation. To see how this 

particular root is altered when a small amount of rotation is included, we set  

For reasonably short times, but not so short that the linear term 

in t in parentheses is cancelled by the sum of terms from I = 2 to 4, we may 

2 To order S2 , and m large, this may be written 

is given by 2 
u1 where, to  order i2 , 

The solution given by Eq. (C7) is the one made use of in 5 5. 
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